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Abstract
The present work gives a description and comparison of recent methods for the direct nu-
merical simulation of droplet vaporization using a two-scalar approach for energy and species
equations. Those methods require a choice of modelling for the phase change process. The
comparison relies on the work of Palmore at al. [1] in the context of Volume of fluid and on
the phase change procedure of Rueda Villegas et al. [2] in the Level set framework. Both ap-
proaches have been implemented and coupled to the same two-phase low Mach solver.
A quantitative analysis is given on the canonical Stefan flow problem where analytical solutions
are available. First the 1D planar Stefan problem is performed to avoid any errors associated to
topology. Then, the 3D spherical Stefan problem is tested to evaluate both methodologies on a
multidimensional case where the choice of interface representation is prevalent. Finally, a 2D
droplet convected in a quiescent ambient gas is presented. This last test case aims to demon-
strate robustness of the solver on a more demanding test case implying convection, interface
deformation and non homogeneous vaporization.
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Introduction
Direct numerical simulation (DNS) of droplet evaporation has been a growing subject of interest
in the last decades with the emergence of multiple DNS solvers and various associated numer-
ical methods. Two-phase flow simulation is a very challenging subject because of the singular
pressure jump and flow properties at the interface. This is even more challenging when dealing
with phase change, with the apparition of new interface jumps, in velocity and temperature gra-
dients. The sharp treatment of the interface seems to be a promising method to deal with such
discontinuities. Numerous recent numerical approaches have shown very encouraging results
using either Volume of fluid (VOF) [1], Level set (LS) [2] or Front tracking [3]. However, some
numerical aspects of droplet evaporation simulations remain open subjects. For instance, the
choice of an interface tracking method conditions the numerical methods associated to phase
change. To handle discontinuity and compute quantities at the interface, the literature often
relies on the PLIC reconstruction [4] in a VOF framework while in a LS framework, the distance
function is used as in the Ghost Fluid Method (GFM) [11]. This work aims to compare these 2
paradigms in the context of general vaporization studies.
In Sec. 2, the physical problem of phase change in a low Mach context is presented. A brief
solver description is given in Sec. 3 while numerical methods associated to phase change
modelling are detailed in Sec. 4 and 5. Finally a comparison of VOF and LS solvers is provided
in Sec. 6 on planar and spherical Stefan flow problems and on a 2D convected droplet.
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Description of the physical problem
Set of conservation equations
The two fluids are described by a set of conservation equations, the condensable fluid is as-
sumed to be monocomponent, and the gas part of the fluid does not react with the bulk gas.
In this work, the following system of conservation equations is considered

∂ρ

∂t
+∇ · (ρu) = 0, ∇ · u = 0 (1)

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · S + ρg (2)

∂ (ρcpT )

∂t
+∇ · (uρcpT ) = ∇ · (k∇T ) (3)

∂ (ρY )

∂t
+∇ · (uρY ) = ∇ · (ρDm∇Y ) (4)

with ρ the density of the fluid, u the velocity of the fluid, S = µ

(
∇u +∇u> − 2

3
(∇ · u) I

)
, p the

pressure, g the acceleration of gravity, T the temperature, cp the specific heat, k the thermal
conduction, Y the species fraction of condensable fluid in the bulk gas and Dm the species
diffusivity.

Interface representation
The interface evolution is deduced from an interface tracking method leading to the evolution of
c = f the volume fraction or c = φ the signed distance function

∂c

∂t
+ uΓ · ∇c = 0 (5)

with uΓ the interface velocity.
To solve equation (5), uΓ is deduced from mass conservation across the interface

ρl (ul − uΓ) · nΓ = ρg (ug − uΓ) · nΓ = ṁ (6)

with ul and ug the liquid and gas velocities respectively and nΓ the interface normal pointing
outward the liquid phase.

This leads to uΓ = ul −
ṁ

ρl
nΓ and uΓ = ug −

ṁ

ρg
nΓ.

The set of conservation equation have associated jumps at the interface. For a given quantity
Φ, it is defined as [Φ]Γ = Φg − Φl.

[u · nΓ]Γ = ṁ

[
1

ρ

]
Γ

(7)

[P ]Γ = −σκ+ 2
[
µn>Γ · ∇u · nΓ

]
Γ
− ṁ2

[
1

ρ

]
Γ

(8)

[k∇T · nΓ]Γ = ṁ
(
Lvap + [Cp]Γ (TΓ − Tsat)

)
(9)

[ρDm∇Y · nΓ]Γ = ṁ [Y ]Γ (10)

with ṁ the vaporization rate and nΓ the interface normal, σ the surface tension (here considered
constant), κ the curvature, Lvap the specific latent heat boiling, TΓ and Tsat the interface and
saturation temperature respectively.
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Definition of the vaporization rate
The evaporation rate has two definitions based on the heat and mass flux jumps at the interface
(9) and (10). This corresponds to different regimes of vaporization

ṁ =
[k∇T · nΓ]Γ(

Lvap + [Cp]Γ (TΓ − Tsat)
) (11)

ṁ =
ρDm∇Y |Γ · nΓ

YΓ − 1
(12)

Then, the computation of the evaporation rate ṁ is either based on equation (11) or (12). The
first choice can lead to non-physical results if one imposes TΓ = Tsat, more specifically when
the interface temperature is very far from the boiling point. The second choice suffers from lack
of numerical boundness in the saturation limit (the denominator 1−YΓ tends to zero), in fact, at

saturation the vaporization is only driven by the heat flux at the interface ṁ =
[k∇T · nΓ]Γ

Lvap
and

equation (12) is not defined. A methodology is proposed in [5] to address this issue by switching
between both vaporization regimes when a critical temperature close to Tsat is reached.
Another way to deal with this issue is to always use equation (11) for ṁ computation and to
provide a closure for TΓ which can be very different from Tsat as in [1] and [2].

Closure for YΓ and TΓ

Considering that the pressure is at saturation at the interface, TΓ and YΓ are related through
the Clausius-Clayperon relation

YΓ =
rPWvap

(1− rP )Wg + rPWvap
, rP =

psat
pamb

= exp

(
−LvapWvap

R

(
1

TΓ
− 1

Tsat

))
(13)

with Wvap and Wg the molar masses of vapour and ambient gas respectively and R the gas
constant. rP defines the ratio between saturation and ambient pressures.

Global solver description
A brief survey of the solver discretization used in this work is given without considering the
phase-change modelling. Our solver is similar to the one presented by Palmore et al. in [1] for
momentum and scalar transport. Here, it is either coupled with VOF or LS.

The VOF scheme used in this work is the dimensional-splitting method of [6] which allows to
conserve mass up to machine precision while keeping a fairly simple and efficient implementa-
tion. For LS, the standard method of [7] is used here with 2 reinitialization iterations after each
time step. This is enough to conserve the distance properties of φ. The interface velocity is

deduced from uΓ = ul −
ṁ

ρl
nΓ. It has been previously noticed [8] that using a liquid velocity

with divergence-free extensions improves significantly mass predictions in the context of evap-
oration. Here, ul is obtained through the procedure proposed in [1] where liquid velocity is
extrapolated in the gas and projected to its divergence-free form.

The momentum equation (2) is solved with a one-field representation of the velocity using a
classical projection method [9] to ensure mass conservation. The prediction step uses a mass-
momentum consistent methodology for the convective term [10]. The convective fluxes are
computed using WENO5 and degenerate to first order upwind when the stencil implies points
from both liquid and gas. The diffusion term follows second order discretization. The pressure
jump condition is prescribed using GFM [11] with a curvature computed from the algorithm pro-
posed in [12] in VOF or from finite differences in LS. The velocity jump is imposed as in [1] for
VOF and the procedure described in [2] is used for LS.
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For jump condition treatment in the energy and mass species equations, one approach is to
discretize jump conditions as source terms [13] in the conservation equations (3) and (4). How-
ever, this leads to a mixing of phase quantities on two or three cells around the interface. In
[14], the issue is handled by splitting the temperature into a liquid part and a gas part. Both
quantities are transported independently and coupled through the Dirichlet boundary condition
TΓ at the interface. In the same manner, the species equation can be considered only in the
gas phase with a boundary condition at the interface. Here, two paradigms are presented for
handling the two-scalar energy and species equations. The first one makes use of the PLIC
reconstruction to solve scalar at their phase barycentre in a VOF framework [1] while the other
one divides the domain between two phases based on the sign of the distance function in a
LS framework [2]. In both cases, this leads to the resolution of 3 scalar equations Tl, Tg and

Γ

Ωl

Ωg

   Physical domain      VOF-PLIC    Level Set

Figure 1. Paradigm differences in phase definition (liquid phase in grey and gas phase in white) and scalar
location (white points are liquid scalars and grey points are gas scalars

Yg which are solved only in their respective phase and coupled through the boundary condition
imposed at the interface. However, in the first case, mixed cells contain both liquid and gas in-
formations while in the second case, a cell is either a gas cell or a liquid cell. These differences
are illustrated in Fig. 1.
The scalar transport discretization is based on the mass consistent transport of [1]. The con-
vective term is discretized using BQUICK and degenerate to first order upwind close to the
interface. The diffusion treatment is detailed in Sec. 4 and 5.

Full phase change procedure for the VOF solver
The procedure used in this work for the VOF solver is the one presented in [1] :

• Tl and Tg are extrapolated in the other phase linearly using the PDE approach of [15] to
obtain T ghost

l and T ghost
g

• ṁ is computed with equation (11) with gradients computed from linearly extrapolated and
values in a stencil around the considered cell

• TΓ and YΓ are computed using the iterative process of [1] imposing both equations (11)
and (12) with the constraint (13) discretely in a given cell

• The diffusion problems of Tl and Tg are solved with the embedded Dirichlet boundary
condition TΓ while Yg is solved with the embedded Dirichlet boundary condition YΓ. The
method uses the PLIC representation of Fig. 1 to build a symmetric linear system.

This combination leads to a consistent methodology as Dirichlet boundary conditions TΓ and
YΓ both depend on Tl, Tg and Yg. Note that the discretization can lead to infinitesimal cells
which require to treat the diffusion implicitly to avoid any stability problem.

Full phase change procedure for the LS solver
The procedure used in this work for the LS solver is the GFTSBE of [2] :

• Tl and Tg are extrapolated in the other phase linearly using the PDE approach of [15] to
obtain T ghost

l and T ghost
g
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• ṁ is computed with equation (11) with gradients computed from linearly extrapolated and
values in a stencil around the considered cell

• YΓ is computed directly from Yg with the first order approximation YΓ ≈ Yg and TΓ is
obtained by inverting equation (13)

• The diffusion problems of Tl and Tg are solved with the immersed Dirichlet boundary
condition TΓ following [16] while Yg is solved with the embedded Robin boundary condition

∇Yg|Γ · nΓ + YΓ
ṁ

ρDm
=

ṁ

ρDm
with the approach of [17]

This combination is consistent too as the Dirichlet boundary condition TΓ only depends on Yg
while the Robin boundary condition only depends on ṁ which is a function of Tl and Tg. Note
that the discretization can lead to infinitesimal distances which require to treat the diffusion
implicitly to avoid any stability problem.

Test cases
Validations are performed using the VOF and LS strategies described above. The Stefan flow
part aims to give a quantitative assessment of the phase change procedure as analytical solu-
tions are available and allows to study the mesh convergence with respect to the exact solution
of the problem. On the other hand, the convected droplet test case demonstrates robustness
and feasibility of the solver on more complex configurations. The fluid properties used in those
test cases are summed up in Tab. 1.

Case Stefan planar Stefan spherical Convected
Phase Liquid Gas Liquid Gas Liquid Gas
ρ (kg/m3) 1000 1 700 1 1000 1.226

µ (Pa · s) 1 · 10−2 1 · 10−5 3.26 · 10−4 1 · 10−5 1.137 · 10−2 1.78 · 10−5

k (W/m/K) 1 · 10−1 1 · 10−2 1.61 · 10−1 5.2 · 10−2 6 · 10−1 4.6 · 10−2

Cp (J/kg/K) 1000 1000 2000 1000 1000 4180
M (kg/mol) 0.018 0.018 0.058 0.029 0.029 0.018

Lvap (J/kg) 1 · 106 – 5.18 · 105 – 2.3 · 106 –
Dm (m2/s) – 1 · 10−5 – 5.2 · 10−5 – 2 · 10−5

Tsat (K) 373.15 – 329 – 373.15 –
σ (N/m) 0.01 – 0 – 0.0728 –

Table 1. Physical properties of fluids considered in the 3 test cases

Stefan flow
Considering a 1D planar Stefan flow allows to put aside all the interface tracking and topolog-
ical issues of curved interfaces. As shown in Fig. 2, air/water vapor gas and liquid water are
separated by an interface with gas phase at the left and liquid phase at the right in a domain
L = 1 mm. The hot gases will cause vaporization of the liquid water and the interface will evolve
to the right through phase change with a free outlet condition at the right of the domain. As
no convection effects are present in the test case, the accuracy of scalar diffusion and inter-
face quantities computation are isolated. The parameters are T∞ = 323.15 K and Y∞ = 0.2,
this gives TΓ = 296.12 K and YΓ = 0.22106. The displacement of the front can be derived

analytically and is given as xΓ(t) = 2γ
√
kgCp,g/ρgt with γ = 0.1157 a constant deduced from

thermodynamic properties (all details of these derivations are in [1]). Finally, the simulation is
performed between t = 0.01 and 0.1s, this gives an initial interface position xΓ = 0.0732 mm.
The spherical problem introduces normal gradients which are not aligned with the mesh, it is
then important to observe the associated errors compared to a 1D problem. This test case
is performed in 3D with an expected diameter evolution following the d2 law. The derivations
in [2] with T∞ = 700 K and Y∞ = 0.2 leads to interface quantities TΓ = 294.92 K and YΓ =
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Figure 2. Sketch of planar and spherical Stefan flow test case configurations

0.43993. Finally, the d2 law is given by
D2

D2
0

= 1 − t

τ
with τ = 0.029126s. In order to limit the

simulation time, a domain [0, 4D0]3 is considered with for each direction : symmetry applied on
one face and the exact solution Tbc(t,x) and Ybc(t,x) is applied on the other face with free flow

boundaries. The interface velocity is simply taken as uΓ = −ṁ
ρl
nΓ as in [1] and [8] and the

surface tension is set to 0. The simulation starts with D0 = 0.1 mm and the simulation stops at
t/τ = 0.01.

VOF
LS

Figure 3. Position error for the planar Stefan flow (left), d2 law for the spherical Stefan flow for VOF and LS
(center) and d2 law without phase change for LS (right)

In Fig. 3 (left), a first order convergence of xΓ for both approaches is presented with a better
accuracy for VOF. This first order trend is expected as the vaporization rate is computed from
differentiation of Tg and Tg which are at best second order because of the embedded boundary
approach. LS is less accurate because of the computation of TΓ and YΓ which is inherently first
order because of the approximation YΓ ≈ Yg. This is discussed in [1] where a second order
extrapolation is proposed and shows huge improvement in accuracy. The improvement has
been tested here and corresponds to the LS-extrap line which shows a better accuracy than
the VOF procedure.
For the multidimensional test case, LS approach is unable to predict the regression correctly for
low resolutions. This is explained by the reinitialisation step which implies a mass loss which
is more important than the regression due to phase change. For completeness, a plot without
evaporation has been added on the right of Fig. 3 to show mass conservation convergence
of the LS method. It is obvious that the test cases with N/D = 4 and 8 cells in the diameter
have a regression driven by the reinitialization. However, for better resolutions, the slope is
very close to the expected regression. The fact that the N/D = 16 case is closer than the
32 one is explained again by the mass loss through reinitialization which counter-balance the
under-predicted vaporization rate. On the other side, the VOF procedure shows a converging
trend but it seems that the asymptotic slope is lower than the exact one. For all meshes, the
vaporization rate is under predicted with huge errors for the under resolved test cases. This
behaviour was also observed in [1] with a convergence rate lower than one.
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Convected droplet
This test case has already been presented in [5], a water droplet with D0 = 5 · 10−4 m is placed
at the top (2.5D0, 19D0) of a domain [0, 5D0]× [0, 20D0] with an initial velocity of 1 m/s. The ini-
tial solution is discontinuous with a uniform temperature in the liquid Tl = 323 K, and a uniform
temperature in the gas Tg = 873 K which is only composed of air Yg = 0. The left and right
boundary conditions are taken periodic while the upper boundary is an inlet with quiescent air
and the lower boundary is a free outlet. Hence, this last case shows the capability of the solver
to handle transient vaporization regimes, deformations of the droplet due to the velocity and
the surface tension and scalar convection effects on the phase change process. The test case
is performed on a 64× 256 mesh which gives N/D = 12.8 during t = 0.009s.

Figure 4. Snapshots at different times (interval of 0.0015 s) for LS (left) and VOF (right)

It can be seen in Fig. 4 that both methods are able to handle a transient regime from the dis-
continuous initial solution to a profile which is characteristic of a convected droplet evaporating.
The temperature remains very high at the head of the droplet leading to a strong vaporization
rate while at the trail, a smoother evolution is observed leading to a vaporization rate closer to
the static evaporation problem.
Note that the main difference observed here is the velocity of the droplet which is faster for VOF
than for LS. This can be explained by the difference in ρu definition in the momentum equation
which is more accurate and consistent for VOF as it is based on the PLIC reconstruction, hence
it leads to a better momentum conservation.

Conclusions
This work compares VOF and LS strategies adapted to the same low Mach solver. The Stefan
flow test cases presented here show that VOF has a regression following d2 law even for the
most under-resolved test cases. However, the error in the regression slope is important for
small resolutions. The LS method seems to give very accurate results when the mesh is fine
enough to limit the mass lost through reinitialization. In both cases, a minimal resolution is
required to give satisfactory results.
The dynamic test case enlightens the importance of the interface tracking method choice. They
lead to a different conservation of momentum which has an impact on the vaporization process.
This problem arises in every evaporation problem as the error in momentum increases with the
density ratio which is of 3 order of magnitude in the target applications. Both VOF and LS
shows a good qualitative behaviour for this last case while a discrepancy between both method
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can be observed in the last snapshots of the simulation when momentum conservation errors
are accumulated.
For a general vaporization problem, the choice of an approach will depend on the application
case and the reachable resolution. DNS of evaporation needs to capture the thermal boundary
layer which can be very thin in high convection configurations. The mesh associated to such
constraints will naturally lead to a good resolution of the droplet where LS can be very inter-
esting as it is accurate and easy to implement in a low Mach solver. However, in evaporating
spray simulations, some structures hold on a very limited number of cells and in that case,
both VOF and LS lead to huge errors in regression predictions. VOF will always under predict
the regression rate while LS will highly over predict the regression because of the mass lost
through reinitialization. Note that this last aspect could be improved with more sophisticated
mass-preserving reinitialization schemes.
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